IBM

MINLP Resources

Lectures and Tutorials

Conferences

Libraries

Resources

Modeling Systems

Solvers

References

  1. Abhishek, K., Leyffer, S. & Linderoth, J. FilMINT: An outer approximation-based solver for convex mixed-integer nonlinear programs. INFORMS J. Comput. (2010). doi:10.1287/ijoc.1090.0373

    2. Abhishek, K. et al. Global optimization of mixed-integer nonlinear problems. AIChE J. 22, 555–567 (2010).

    3. Adams, W. P. & Sherali, H. D. Linearization Strategies for a Class of Zero-One Mixed Integer Programming Problems. Oper. Res. (2008). doi:10.1287/opre.38.2.217

    4. Adams, W. P. & Sherali, H. D. A hierarchy of relaxations leading to the convex hull representation for general discrete optimization problems. Ann. Oper. Res. (2005). doi:10.1007/s10479-005-3966-4

    5. Adhya, N., Tawarmalani, M. & Sahinidis, N. V. A Lagrangian approach to the pooling problem. Ind. Eng. Chem. Res. (1999). doi:10.1021/ie980666q

    6. Adjiman, C. S., Dallwig, S., Floudas, C. A. & Neumaier, A. A global optimization method, $α$BB, for general twice-differentiable constrained NLPs — I. Theoretical advances. Comput. Chem. Eng. 22, 1137–1158 (1998).

    7. Adjiman, C. S., Androulakis, I. P. & Floudas, C. A. Global optimization of mixed-integer nonlinear problems. AIChE Journal (2000). doi:10.1002/aic.690460908

    8. Adjiman, C. S., Androulakis, I. P. & Floudas, C. A. A global optimization method, αBB, for general twice-differentiabe constrained NLPs-II. Implementation and computational results. Comput. Chem. Eng. (1998). doi:10.1016/S0098-1354(98)00218-X

    9. Adjiman, C. S., Androulakis, I. P. & Floudas, C. A. Global optimization of MINLP problems in process synthesis and design. Comput. Chem. Eng. (2003). doi:10.1016/s0098-1354(97)87542-4

    10. Adjiman, C. S., Androulakis, I. P., Maranas, C. D. & Floudas, C. A. A global optimization method, αBB, for process design. Comput. Chem. Eng. (1996). doi:10.1016/0098-1354(96)00080-4

    11. Ahmadi, A. A. & Majumdar, A. DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization. SIAM J. Appl. Algebr. Geom. (2019). doi:10.1137/18m118935x

    12. Alizadeh, F. & Goldfarb, D. Second-order cone programming. Math. Program. 95, 3–51 (2003).

    13. Al-Khayyal, F. A. Jointly constrained bilinear programs and related problems: An overview. Comput. Math. with Appl. 19, 53–62 (1990).

    14. Al-Khayyal, F. A. & Falk, J. E. Jointly Constrained Biconvex Programming. Math. Oper. Res. 8, 273–286 (1983).

    15. Androulakis, I. P., Maranas, C. D. & Floudas, C. A. $α$BB: A global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7, 337–363 (1995).

    16. Anstreicher, K. M. & Burer, S. Computable representations for convex hulls of low-dimensional quadratic forms. Math. Program. (2010). doi:10.1007/s10107-010-0355-9

    17. Balas, E. Disjunctive Programming and a Hierarchy of Relaxations for Discrete Optimization Problems. SIAM J. Algebr. Discret. Methods 6, 466–486 (1985).

    18. Balas, E. Disjunctive programming. in 50 Years of Integer Programming 1958-2008: From the Early Years to the State-of-the-Art 283–340 (2010). doi:10.1007/978-3-540-68279-0_10

    19. Balas, E. Disjunctive programming: Properties of the convex hull of feasible points. Discret. Appl. Math. 89, 3–44 (1998).

    20. Balas, E. Projection, lifting and extended formulation in integer and combinatorial optimization. Ann. Oper. Res. 140, 125–161 (2005).

    21. Balas, E. & Jeroslow, R. G. Strengthening cuts for mixed integer programs. Eur. J. Oper. Res. 4, 224–234 (1980).

    22. Ballerstein, M. & Michaels, D. Extended formulations for convex envelopes. J. Glob. Optim. (2014). doi:10.1007/s10898-013-0104-8

    23. Bao, X., Khajavirad, A., Sahinidis, N. V. & Tawarmalani, M. Global optimization of nonconvex problems with multilinear intermediates. Math. Program. Comput. (2015). doi:10.1007/s12532-014-0073-z

    24. Bao, X., Sahinidis, N. V. & Tawarmalani, M. Semidefinite relaxations for quadratically constrained quadratic programming: A review and comparisons. Math. Program. (2011). doi:10.1007/s10107-011-0462-2

    25. Bao, X., Sahinidis, N. V & Tawarmalani, M. Multiterm polyhedral relaxations for nonconvex, quadratically constrained quadratic programs. Optim. Methods Softw. 24, 485–504 (2009).

    26. Barton, P. I. & Pantelides, C. C. Modeling of combined discrete/continuous processes. AIChE J. (1994). doi:10.1002/aic.690400608

    27. Bello, I., Pham, H., Le, Q. V., Norouzi, M. & Bengio, S. Neural Combinatorial Optimization. Int. Conf. Learn. Represent. (2017).

    28. Belotti, P. COUENNE: a user’s manual. (2010). Available at: https://projects.coin-or.org/Couenne/browser/trunk/Couenne/doc/couenne-user-manual.pdf?format=raw. (Accessed: 20th May 2018)

    29. Belotti, P. et al. On handling indicator constraints in mixed integer programming. Comput. Optim. Appl. 65, 545–566 (2016).

    30. Belotti, P., Cafieri, S., Lee, J. & Liberti, L. Feasibility-based bounds tightening via fixed points. in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6508 LNCS, 65–76 (2010).

    31. Belotti, P. et al. Mixed-integer nonlinear optimization. Acta Numer. 22, 1–131 (2013).

    32. Belotti, P., Lee, J., Liberti, L., Margot, F. & Wächter, A. Branching and bounds tighteningtechniques for non-convex MINLP. Optim. Methods Softw. 24, 597–634 (2009).

    33. Belotti, P., Lee, J., Liberti, L., Margot, F. & Wächter, A. Branching and bounds tighteningtechniques for non-convex MINLP. Optim. Methods Softw. (2009). doi:10.1080/10556780903087124

    34. Benders, J. F. Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 4, 238–252 (1962).

    35. Benson, H. Y. Mixed integer nonlinear programming using interior-point methods. Optimization Methods and Software (2011). doi:10.1080/10556781003799303

    36. Bergamini, M. L., Aguirre, P. & Grossmann, I. Logic-based outer approximation for globally optimal synthesis of process networks. Comput. Chem. Eng. 29, 1914–1933 (2005).

    37. Bergamini, M. L., Grossmann, I., Scenna, N. & Aguirre, P. An improved piecewise outer-approximation algorithm for the global optimization of MINLP models involving concave and bilinear terms. Comput. Chem. Eng. 32, 477–493 (2008).

    38. Bernal, D. E., Chen, Q., Gong, F. & Grossmann, I. E. Mixed-Integer Nonlinear Decomposition Toolbox for Pyomo (MindtPy). in Computer Aided Chemical Engineering (2018). doi:10.1016/B978-0-444-64241-7.50144-0

    39. Berthold, T., Heinz, S. & Vigerske, S. Extending a CIP Framework to Solve MIQCPs. in 427–444 (Springer, New York, NY, 2012). doi:10.1007/978-1-4614-1927-3_15

    40. Biegler, L. T. & Grossmann, I. E. Retrospective on optimization. Computers and Chemical Engineering 28, 1169–1192 (2004).

    41. Bonami, P. Lift-and-project cuts for mixed integer convex programs. in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6655 LNCS, 52–64 (2011).

    42. Bonami, P. et al. An algorithmic framework for convex mixed integer nonlinear programs. Discret. Optim. 5, 186–204 (2008).

    43. Bonami, P., Cornuéjols, G., Lodi, A. & Margot, F. A Feasibility Pump for mixed integer nonlinear programs. Math. Program. 119, 331–352 (2009).

    44. Bonami, P. & Gonçalves, J. P. M. Heuristics for convex mixed integer nonlinear programs. Comput. Optim. Appl. 51, 729–747 (2012).

    45. Bonami, P., Kilinç, M. & Linderoth, J. Mixed Integer Nonlinear Programming. Mixed Integer Nonlinear Programming 154, (2012).

    46. Bonami, P., Kilinç, M. & Linderoth, J. Algorithms and software for convex mixed integer nonlinear programs. Mix. Integer Nonlinear Program. 1–39 (2012). doi:10.1007/978-1-4614-1927-3

    47. Bonami, P. & Lee, J. Bonmin users’ manual. Retrieved Novemb. (2007).

    48. Borchers, B. & Mitchell, J. E. An improved branch and bound algorithm for mixed integer nonlinear programs. Comput. Oper. Res. 21, 359–367 (1994).

    49. Boukouvala, F., Misener, R. & Floudas, C. A. Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO. European Journal of Operational Research 252, 701–727 (2016).

    50. Boyd, S. & Vandenberghe, L. Convex Optimization. Optimization Methods and Software 25, (2010).

    51. Bragalli, C., D’Ambrosio, ​Claudia, Lee, J., Lodi, A. & Toth, P. An MINLP Solution Method for a Water Network Problem. in Algorithms – ESA 2006 696–707 (2006).

    52. Bragalli, C., D’Ambrosio, C., Lee, J., Lodi, A. & Toth, P. Water Network Design by MINLP. IBM Res. RC24495, (2008).

    53. Burer, S. & Kılınç-Karzan, F. How to convexify the intersection of a second order cone and a nonconvex quadratic. Math. Program. (2017). doi:10.1007/s10107-016-1045-z

    54. Burer, S. & Letchford, A. N. Non-convex mixed-integer nonlinear programming: A survey. Surveys in Operations Research and Management Science 17, 97–106 (2012).

    55. Bussieck, M. R., Drud, A. S. & Meeraus, A. MINLPLib—A Collection of Test Models for Mixed-Integer Nonlinear Programming. INFORMS J. Comput. (2003). doi:10.1287/ijoc.15.1.114.15159

    56. Bussieck, M. R. & Pruessner, A. Mixed-Integer Nonlinear Programming. Memory 20007, (2003).

    57. Bussieck, M. R. & Vigerske, S. MINLP Solver Software. in Wiley Encyclopedia of Operations Research and Management Science (2011). doi:10.1002/9780470400531.eorms0527

    58. Cafieri, S., Lee, J. & Liberti, L. On convex relaxations of quadrilinear terms. J. Glob. Optim. 47, 661–685 (2010).

    59. Castro, P. M. & Grossmann, I. E. Optimality-based bound contraction with multiparametric disaggregation for the global optimization of mixed-integer bilinear problems. J. Glob. Optim. 59, 277–306 (2014).

    60. Castro, P. M. & Grossmann, I. E. Generalized disjunctive programming as a systematic modeling framework to derive scheduling formulations. Ind. Eng. Chem. Res. 51, 5781–5792 (2012).

    61. Ceria, S. & Soares, J. Convex programming for disjunctive convex optimization. Math. Program. Ser. B (1999). doi:10.1007/s101070050106

    62. Chachuat, B., Singer, A. B. & Barton, P. I. Global methods for dynamic optimization and mixed-integer dynamic optimization. Ind. Eng. Chem. Res. 45, 8373–8392 (2006).

    63. Chachuat, B., Singer, A. B. & Barton, P. I. Global mixed-integer dynamic optimization. AIChE J. 51, 2235–2253 (2005).

    64. Conforti, M. & Del Pia, A. Disjunctive programming and relaxations of polyhedra. Math. Program. 144, 307–314 (2014).

    65. Cooper, L. & Cooper, M. W. Non-linear integer programming. Computers & Mathematics with Applications 1, (1975).

    66. Cozad, A. & Sahinidis, N. V. A global MINLP approach to symbolic regression. Math. Program. (2018). doi:10.1007/s10107-018-1289-x

    67. D ’ambrosio, C., Frangioni, A., Liberti, L. & Lodi, A. Experiments with a Feasibility Pump approach for nonconvex MINLPs.

    68. Dakin, R. J. A tree-search algorithm for mixed integer programming problems. Comput. J. 8, 250–255 (1965).

    69. D’Ambrosio, C. Application-oriented mixed integer non-linear programming. 4OR 8, 319–322 (2010).

    70. D’Ambrosio, C., Frangioni, A., Liberti, L. & Lodi, A. A storm of feasibility pumps for nonconvex MINLP. Math. Program. 136, 375–402 (2012).

    71. D’Ambrosio, C., Lee, J. & Wächter, A. A global-optimization algorithm for mixed-integer nonlinear programs having separable non-convexity. in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5757 LNCS, 107–118 (2009).

    72. D’Ambrosio, C. & Lodi, A. Mixed integer nonlinear programming tools: An updated practical overview. Ann. Oper. Res. 204, 301–320 (2013).

    73. Dua, V. & Pistikopoulos, E. N. Algorithms for the solution of multiparametric mixed-integer nonlinear optimization problems. Ind. Eng. Chem. Res. 38, 3976–3987 (1999).

    74. Duran, M. A. & Grossmann, I. E. A mixed‐integer nonlinear programming algorithm for process systems synthesis. AIChE J. 32, 592–606 (1986).

    75. Duran, M. A. & Grossmann, I. E. A mixed‐integer nonlinear programming algorithm for process systems synthesis. AIChE J. (1986). doi:10.1002/aic.690320408

    76. Duran, M. A. & Grossmann, I. E. An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36, 307–339 (1986).

    77. Exler, O. & Schittkowski, K. A trust region SQP algorithm for mixed-integer nonlinear programming. Optim. Lett. 1, 269–280 (2007).

    78. Falk, J. E. & Hoffman, K. R. A successive underestimation method for concave minimization problems. Math. Oper. Res. I, 251–260 (1976).

    79. Ferris, M. C. MATLAB and GAMS: Interfacing Optimization and Visualization Software. (1999).

    80. Ferris, M. C., Dirkse, S. P., Jagla, J.-H. & Meeraus, A. An Extended Mathematical Programming Framework. Comput. Chem. Eng. 33, 1973–1982 (2009).

    81. Ferris, M. C., Dirkse, S. P. & Meeraus, A. Mathematical Programs with Equilibrium Constraints: Automatic Reformulation and Solution via Constrained Optimization. in Frontiers in Applied General Equilibrium Modeling (eds. Kehoe, T. J., Srinivasan, T. N. & Whalley, J.) 67–93 (Cambridge University Press, 2005).

    82. Fletcher, R. & Leyffer, S. Solving mixed integer nonlinear programs by outer approximation. Math. Program. 66, 327–349 (1994).

    83. Flores-Tlacuahuac, A. & Biegler, L. T. Simultaneous mixed-integer dynamic optimization for integrated design and control. Comput. Chem. Eng. (2007). doi:10.1016/j.compchemeng.2006.08.010

    84. Floudas, C. a. Nonlinear and Mixed-Integer Optimization. Handb. Appl. Optim. 462 (1995). doi:10.1023/A:1008256302713

    85. Floudas, C. A. & Gounaris, C. E. A review of recent advances in global optimization. J. Glob. Optim. (2009). doi:10.1007/s10898-008-9332-8

    86. Floudas, C. A. & Lin, X. Mixed integer linear programming in process scheduling: Modeling, algorithms, and applications. Ann. Oper. Res. 139, 131–162 (2005).

    87. Floudas, C. A. & Pistikopoulos, E. N. Professor Ignacio E. Grossmann-Tribute. Comput. Chem. Eng. 72, 1–2 (2015).

    88. Frangioni, A. & Gentile, C. Perspective cuts for a class of convex 0-1 mixed integer programs. Math. Program. (2006). doi:10.1007/s10107-005-0594-3

    89. Gauthier, J. M. & Ribi??re, G. Experiments in mixed-integer linear programming using pseudo-costs. Math. Program. 12, 26–47 (1977).

    90. Geoffrion, A. M. Generalized Benders decomposition. J. Optim. Theory Appl. 10, 237–260 (1972).

    91. Gong, J. & You, F. An efficient global optimization algorithm for mixed-integer nonlinear fractional programs with separable concave terms. in Proceedings of the American Control Conference 2015-July, 547–552 (2015).

    92. Gounaris, C. E. & Floudas, C. A. Tight convex underestimators for C2-continuous problems: II. multivariate functions. J. Glob. Optim. 42, 69–89 (2008).

    93. Gounaris, C. E. & Floudas, C. A. Tight convex underestimators for C2 -continuous problems: I. univariate functions. J. Glob. Optim. 42, 51–67 (2008).

    94. Grossmann, I. E. Mixed-integer nonlinear programming techniques for the synthesis of engineering systems. Res. Eng. Des. 1, 205–228 (1990).

    95. Grossmann, I. E. & Sargent, R. W. H. Optimum design of chemical plants with uncertain parameters. AIChE J. 24, 1021–1028 (1978).

    96. Grossmann, I. E. Mixed-integer programming approach for the synthesis of integrated process flowsheets. Comput. Chem. Eng. 9, 463–482 (1985).

    97. Grossmann, I. E. Review of nonlinear mixed-integer and disjunctive programming techniques. Optim. Eng. 3, 227–252 (2002).

    98. Grossmann, I. E. Advances in mathematical programming models for enterprise-wide optimization. Comput. Chem. Eng. (2012). doi:10.1016/j.compchemeng.2012.06.038

    99. Grossmann, I. E. & Karuppiah, R. A Lagrangean based branch-and-cut algorithm for global optimization of nonconvex mixed-integer nonlinear programs with decomposable structures. J. Glob. Optim. (2008). doi:10.1007/s10898-007-9203-8

    100. Grossmann, I. E. & Sargent, R. W. H. Optimum Design of Multipurpose Chemical Plants. Ind. Eng. Chem. Process Des. Dev. (1979). doi:10.1021/i260070a031

    101. Grossmann, I. E. & Karuppiah, R. A Lagrangean based branch-and-cut algorithm for global optimization of nonconvex mixed-integer nonlinear programs with decomposable structures. J. Glob. Optim. 41, 163–186 (2008).

    102. Grossmann, I. E. & Kravanja, Z. Mixed-integer nonlinear programming techniques for process systems engineering. Comput. Chem. Eng. 19, 189–204 (1995).

    103. Grossmann, I. E. & Lee, S. Generalized convex disjunctive programming: Nonlinear convex hull relaxation. Comput. Optim. Appl. 26, 83–100 (2003).

    104. Grossmann, I. E. & Trespalacios, F. Systematic modeling of discrete-continuous optimization models through generalized disjunctive programming. AIChE J. 59, 3276–3295 (2013).

    105. Grossmann, I. E., Viswanathan, J., Vecchietti, A., Raman, R. & Kalvelagen, E. GAMS/DICOPT: A Discrete Continuous Optimization Package. (2002).

    106. Grossmann, I. & Ruiz, J. Generalized Disjunctive Programming: A Framework for Formulation and Alternative Algorithms for MINLP Optimization. Mix. Integer Nonlinear Program. 154, 93–115 (2012).

    107. Günlük, O. & Linderoth, J. Perspective reformulations of mixed integer nonlinear programs with indicator variables. Math. Program. 124, 183–205 (2010).

    108. Günlük, O. & Linderoth, J. Perspective Reformulation and Applications. in (2011). doi:10.1007/978-1-4614-1927-3_3

    109. Gupta, O. K. & Ravindran, A. Branch and Bound Experiments in Convex Nonlinear Integer Programming. Manage. Sci. 31, 1533–1546 (1985).

    110. Harjunkoski, I. & Grossmann, I. E. Decomposition techniques for multistage scheduling problems using mixed-integer and constraint programming methods. Comput. Chem. Eng. 26, 1533–1552 (2002).

    111. Harjunkoski, I., Westerlund, T., Pörn, R. & Skrifvars, H. Different transformations for solving non-convex trim-loss problems by MINLP. Eur. J. Oper. Res. 105, 594–603 (1998).

    112. Hart, W. E. et al. Pyomo — Optimization Modeling in Python. (2017). doi:10.1007/978-3-319-58821-6

    113. Hooker, J. N. Logic-based methods for optimization. in Principles and Practice of Constraint Programming. Second International Workshop, PPCP’94. Proceedings, 2-4 May 1994 336 (1994). doi:10.1007/3-540-58601-6

    114. Hooker, J. N., Yan, H., Grossmann, I. E. & Raman, R. Logic cuts for processing networks with fixed charges. Comput. Oper. Res. 21, 265–279 (1994).

    115. Jonuzaj, S. & Adjiman, C. S. Designing optimal mixtures using generalized disjunctive programming: Hull relaxations. Chem. Eng. Sci. 159, 106–130 (2017).

    116. Jünger, M. et al. 50 Years of Integer Programming 1958-2008. 50 Years of Integer Programming 1958-2008: From the Early Years to the State-of-the-Art (2010). doi:10.1007/978-3-540-68279-0

    117. Karuppiah, R. & Grossmann, I. E. Global optimization of multiscenario mixed integer nonlinear programming models arising in the synthesis of integrated water networks under uncertainty. Comput. Aided Chem. Eng. 21, 1747–1752 (2006).

    118. Kesavan, P., Allgor, R. J., Gatzke, E. P. & Barton, P. I. Outer approximation algorithms for separable nonconvex mixed-integer nonlinear programs. Math. Program. 100, 517–535 (2004).

    119. Khajavirad, A., Michalek, J. J. & Sahinidis, N. V. Relaxations of factorable functions with convex-transformable intermediates. Math. Program. 144, 107–140 (2014).

    120. Khajavirad, A. & Sahinidis, N. V. Convex envelopes generated from finitely many compact convex sets. Math. Program. 137, 371–408 (2013).

    121. Khajavirad, A. & Sahinidis, N. V. Convex envelopes of products of convex and component-wise concave functions. J. Glob. Optim. 52, 391–409 (2012).

    122. Kirst, P., Rigterink, F. & Stein, O. Global optimization of disjunctive programs. J. Glob. Optim. 69, 283–307 (2017).

    123. Klanšek, U., Žula, T., Kravanja, Z. & Kravanja, S. Minlp optimization of steel frames. Adv. Steel Constr. 3, 689–705 (2007).

    124. Kocis, G. R. & Grossmann, I. E. Computational experience with dicopt solving MINLP problems in process systems engineering. Comput. Chem. Eng. 13, 307–315 (1989).

    125. Kocis, G. R. & Grossmann, I. E. Global Optimization of Nonconvex Mixed-Integer Nonlinear Programming (Minlp) Problems in Process Synthesis. Ind. Eng. Chem. Res. 27, 1407–1421 (1988).

    126. Kolodziej, S., Castro, P. M. & Grossmann, I. E. Global optimization of bilinear programs with a multiparametric disaggregation technique. J. Glob. Optim. 57, 1039–1063 (2013).

    127. Kravanja, S., Šilih, S. & Kravanja, Z. The multilevel MINLP optimization approach to structural synthesis: The simultaneous topology, material, standard and rounded dimension optimization. Adv. Eng. Softw. 36, 568–583 (2005).

    128. Kravanja, S., Soršak, A. & Kravanja, Z. Efficient multilevel MINLP strategies for solving large combinatorial problems in engineering. Optim. Eng. (2003). doi:10.1023/A:1021812414215

    129. Kröger, O., Coffrin, C., Hijazi, H. & Nagarajan, H. Juniper: An Open-Source Nonlinear Branch-and-Bound Solver in Julia.

    130. Kronqvist, J., Bernal, D. E., Lundell, A. & Westerlund, T. A center-cut algorithm for quickly obtaining feasible solutions and solving convex MINLP problems. Comput. Chem. Eng. (2019). doi:10.1016/j.compchemeng.2018.06.019

    131. Kronqvist, J., Lundell, A. & Westerlund, T. The extended supporting hyperplane algorithm for convex mixed-integer nonlinear programming. J. Glob. Optim. 64, 249–272 (2016).

    132. Kronqvist, J., Lundell, A. & Westerlund, T. Reformulations for utilizing separability when solving convex MINLP problems. J. Glob. Optim. (2018). doi:10.1007/s10898-018-0616-3

    133. Lastusilta, T., Bussieck, M. R. & Westerlund, T. An experimental study of the GAMS/AlphaECP MINLP solver. Ind. Eng. Chem. Res. 48, 7337–7345 (2009).

    134. Lee, J. Mixed-integer nonlinear programming: Some modeling and solution issues. IBM J. Res. Dev. 51, 489–497 (2007).

    135. Lee, J. In situ column generation for a cutting-stock problem. Comput. Oper. Res. 34, 2345–2358 (2007).

    136. Lee, J., Onn, S., Romanchuk, L. & Weismantel, R. The quadratic Graver cone, quadratic integer minimization, and extensions. Math. Program. 136, 301–323 (2012).

    137. Lee, J., Onn, S. & Weismantel, R. On test sets for nonlinear integer maximization. Oper. Res. Lett. 36, 439–443 (2008).

    138. Lee, J., Onn, S. & Weismantel, R. Intractability of approximate multi-dimensional nonlinear optimization on independence systems. Discrete Math. 311, 780–783 (2011).

    139. Lee, S. & Grossmann, I. E. Logic-based modeling and solution of nonlinear discrete/continuous optimization problems. Ann. Oper. Res. 139, 267–288 (2005).

    140. Lee, S. & Grossmann, I. E. A global optimization algorithm for nonconvex generalized disjunctive programming and applications to process systems. Comput. Chem. Eng. 25, 1675–1697 (2001).

    141. Lee, S. & Grossmann, I. E. New algorithms for nonlinear generalized disjunctive programming. Comput. Chem. Eng. 24, 2125–2141 (2000).

    142. Lee, S. & Grossmann, I. E. Global optimization of nonlinear generalized disjunctive programming with bilinear equality constraints: Applications to process networks. Comput. Chem. Eng. 27, 1557–1575 (2003).

    143. Leyffer, S. Integrating SQP and branch-and-bound for mixed integer nonlinear programming. Comput. Optim. Appl. 18, 295–309 (2001).

    144. Leyffer, S. Integrating SQP and branch-and-bound for mixed integer nonlinear programming. Comput. Optim. Appl. (2001). doi:10.1023/A:1011241421041

    145. Li, J., Misener, R. & Floudas, C. A. Continuous-time modeling and global optimization approach for scheduling of crude oil operations. AIChE J. (2012). doi:10.1002/aic.12623

    146. Li, X., Chen, Y. & Barton, P. I. Nonconvex generalized benders decomposition with piecewise convex relaxations for global optimization of integrated process design and operation problems. Ind. Eng. Chem. Res. 51, 7287–7299 (2012).

    147. Li, X., Tomasgard, A. & Barton, P. I. Nonconvex Generalized Benders Decomposition for Stochastic Separable Mixed-Integer Nonlinear Programs. J. Optim. Theory Appl. 151, 425–454 (2011).

    148. Liberti, L. Reformulation and convex relaxation techniques for global optimization. 4OR (2004). doi:10.1007/s10288-004-0038-6

    149. Liberti, L. & Pantelides, C. C. An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms. J. Glob. Optim. 36, 161–189 (2006).

    150. Linderoth, J. A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. in Mathematical Programming 103, 251–282 (2005).

    151. Linderoth, J. A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. in Mathematical Programming (2005). doi:10.1007/s10107-005-0582-7

    152. Lougee-Heimer, R. The Common Optimization INterface for Operations Research: Promoting open-source software in the operations research community. IBM J. Res. Dev. (2003). doi:10.1147/rd.471.0057

    153. Lubin, M., Yamangil, E., Bent, R. & Vielma, J. P. Polyhedral approximation in mixed-integer convex optimization. Mathematical Programming 1–30 (2017). doi:10.1007/s10107-017-1191-y

    154. McCormick, G. P. Computability of global solutions to factorable nonconvex programs: Part I - Convex underestimating problems. Math. Program. 10, 147–175 (1976).

    155. Melo, W., Fampa, M. & Raupp, F. Integrating nonlinear branch-and-bound and outer approximation for convex Mixed Integer Nonlinear Programming. J. Glob. Optim. 60, 373–389 (2014).

    156. Melo, W., Fampa, M. & Raupp, F. An overview of MINLP algorithms and their implementation in Muriqui Optimizer. Ann. Oper. Res. (2018). doi:10.1007/s10479-018-2872-5

    157. Méndez, C. A., Cerdá, J., Grossmann, I. E., Harjunkoski, I. & Fahl, M. State-of-the-art review of optimization methods for short-term scheduling of batch processes. Computers and Chemical Engineering 30, 913–946 (2006).

    158. Misener, R. & Floudas, C. A. Global optimization of mixed-integer quadratically-constrained quadratic programs (MIQCQP) through piecewise-linear and edge-concave relaxations. in Mathematical Programming 136, 155–182 (2012).

    159. Misener, R. & Floudas, C. A. ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations. J. Glob. Optim. 59, 503–526 (2014).

    160. Misener, R. & Floudas, C. A. GloMIQO: Global mixed-integer quadratic optimizer. J. Glob. Optim. 57, 3–50 (2013).

    161. Mitsos, A. Global solution of nonlinear mixed-integer bilevel programs. J. Glob. Optim. 47, 557–582 (2010).

    162. Mitsos, A., Chachuat, B. & Barton, P. I. McCormick-Based Relaxations of Algorithms. SIAM J. Optim. (2009). doi:10.1137/080717341

    163. Mitsos, A., Lemonidis, P. & Barton, P. I. Global solution of bilevel programs with a nonconvex inner program. J. Glob. Optim. 42, 475–513 (2008).

    164. Mitsos, A., Lemonidis, P. & Barton, P. I. Global solution of bilevel programs with a nonconvex inner program. J. Glob. Optim. (2008). doi:10.1007/s10898-007-9260-z

    165. Mitsos, A. & Tsoukalas, A. Global optimization of generalized semi-infinite programs via restriction of the right hand side. J. Glob. Optim. (2015). doi:10.1007/s10898-014-0146-6

    166. Nohra, C. J. & Sahinidis, N. V. Global optimization of nonconvex problems with convex-transformable intermediates. J. Glob. Optim. (2018). doi:10.1007/s10898-018-0631-4

    167. Nowak, I. & Vigerske, S. LaGO: A (heuristic) Branch and Cut algorithm for nonconvex MINLPs. in Central European Journal of Operations Research 16, 127–138 (2008).

    168. Padberg, M. Approximating separable nonlinear functions via mixed zero-one programs. Oper. Res. Lett. (2000). doi:10.1016/s0167-6377(00)00028-6

    169. Pietro Belotti, Christian Kirches, Sven Leyffer, Jeff Linderoth, Jim Luedtke, and A. M. et al. Mixed-Integer Nonlinear Optimization (Survey). Acta Numer. (2012). doi:10.1017/S0962492913000032

    170. Pörn, R., Björk, K. M. & Westerlund, T. Global solution of optimization problems with signomial parts. Discret. Optim. 5, 108–120 (2008).

    171. Pörn, R., Harjunkoski, I. & Westerlund, T. Convexification of different classes of non-convex MINLP problems. Comput. Chem. Eng. 23, 439–448 (1999).

    172. Puranik, Y. & Sahinidis, N. V. Domain reduction techniques for global NLP and MINLP optimization. Constraints 22, 338–376 (2017).

    173. Qualizza, A. Cutting Planes for Mixed Integer Programming. ProQuest Dissertations and Theses (2011).

    174. Quesada, I. & Grossmann, I. E. An LP/NLP based branch and bound algorithm for convex MINLP optimization problems. Comput. Chem. Eng. 16, 937–947 (1992).

    175. Quesada, I. & Grossmann, I. E. A global optimization algorithm for linear fractional and bilinear programs. J. Glob. Optim. 6, 39–76 (1995).

    176. Raman, R. & Grossmann, I. E. Modelling and computational techniques for logic based integer programming. Comput. Chem. Eng. 18, 563–578 (1994).

    177. Ruiz, J. P. & Grossmann, I. E. A New Theoretical Result for Convex Nonlinear Generalized Disjunctive Programs and its Applications. Comput. Aided Chem. Eng. 30, 1197–1201 (2012).

    178. Ruiz, J. P. & Grossmann, I. E. Using convex nonlinear relaxations in the global optimization of nonconvex generalized disjunctive programs. Comput. Chem. Eng. (2013). doi:10.1016/j.compchemeng.2012.09.017

    179. Ruiz, J. P. & Grossmann, I. E. Global optimization of non-convex generalized disjunctive programs: a review on reformulations and relaxation techniques. J. Glob. Optim. 67, 43–58 (2017).

    180. Ruiz, J. P. & Grossmann, I. E. Using redundancy to strengthen the relaxation for the global optimization of MINLP problems. Comput. Chem. Eng. 35, 2729–2740 (2011).

    181. Ruiz, J. P. & Grossmann, I. E. A hierarchy of relaxations for nonlinear convex generalized disjunctive programming. Eur. J. Oper. Res. 218, 38–47 (2012).

    182. Ruiz, J. P. & Grossmann, I. E. Strengthening of lower bounds in the global optimization of Bilinear and Concave Generalized Disjunctive Programs. Comput. Chem. Eng. 34, 914–930 (2010).

    183. Ruiz, J. P. & Grossmann, I. E. Using convex nonlinear relaxations in the global optimization of nonconvex generalized disjunctive programs. Comput. Chem. Eng. 49, 70–84 (2013).

    184. Ruiz, J. P., Jagla, J.-H., Grossmann, I. E., Meeraus, A. & Vecchietti, A. Generalized Disjunctive Programming: Solution Strategies. Algebraic Modeling Systems: Modeling and Solving Real World Optimization Problems 104, (2012).

    185. Ryoo, H. S. & Sahinidis, N. V. Global optimization of nonconvex NLPs and MINLPs with applications in process design. Comput. Chem. Eng. 19, 551–566 (1995).

    186. Ryoo, H. S. & Sahinidis, N. V. A branch-and-reduce approach to global optimization. J. Glob. Optim. 8, 107–138 (1996).

    187. Ryoo, H. S. & Sahinidis, N. V. Analysis of Bounds for Multilinear Functions. J. Glob. Optim. 19, 403–424 (2001).

    188. Ryoo, H. S. & Sahinidis, N. V. Global optimization of multiplicative programs. J. Glob. Optim. 26, 387–418 (2003).

    189. Sahinidis, N. V, Bliek, C., Jermann, C. & Neumaier, A. Global optimization and constraint satisfaction: The branch-and-reduce approach. in Global Optimization and Constraint Satisfaction 1–16 (2003). doi:10.1007/b94062

    190. Sahinidis, N. V & Grossmann, I. E. Convergence properties of generalized benders decomposition. Comput. Chem. Eng. 15, 481–491 (1991).

    191. Sahinidis, N. V. BARON: A general purpose global optimization software package. J. Glob. Optim. 8, 201–205 (1996).

    192. Sahinidis, N. V. Mixed-integer nonlinear programming 2018. Optimization and Engineering (2019). doi:10.1007/s11081-019-09438-1

    193. Sahinidis, N. V & Tawarmalani, M. Accelerating branch-and-bound through a modeling language construct for relaxation-specific constraints. J. Glob. Optim. 32, 259–280 (2005).

    194. Sahinidis, N. V, Tawarmalani, M. & Yu, M. Design of alternative refrigerants via global optimization. AIChE J. 49, 1761–1775 (2003).

    195. Sawaya, N. Reformulations, relaxations and cutting planes for generalized disjunctive programming. ProQuest Dissertations and Theses (2006).

    196. Sawaya, N. W. & Grossmann, I. E. Computational implementation of non-linear convex hull reformulation. Comput. Chem. Eng. 31, 856–866 (2007).

    197. Sawaya, N. W. & Grossmann, I. E. A cutting plane method for solving linear generalized disjunctive programming problems. Comput. Aided Chem. Eng. 15, 1032–1037 (2003).

    198. Saxena, A., Bonami, P. & Lee, J. Convex relaxations of non-convex mixed integer quadratically constrained programs: Projected formulations. Math. Program. 130, 359–413 (2011).

    199. Saxena, A., Bonami, P. & Lee, J. Convex relaxations of non-convex mixed integer quadratically constrained programs: Projected formulations. Math. Program. (2011). doi:10.1007/s10107-010-0340-3

    200. Shectman, J. P. & Sahinidis, N. V. A Finite Algorithm for Global Minimization of Separable Concave Programs. J. Glob. Optim. 12, 1–36 (1998).

    201. Shelton, M. R. & Grossmann, I. E. Optimal synthesis of integrated refrigeration systems-I. Mixed-integer programming model. Comput. Chem. Eng. 10, 445–459 (1986).

    202. Sherali, H. D. & Adams, W. P. A hierarchy of relaxations and convex hull characterizations for mixed-integer zero-one programming problems. Discret. Appl. Math. 52, 83–106 (1994).

    203. Smith, E. M. B. & Pantelides, C. C. A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs. in Computers and Chemical Engineering 23, 457–478 (1999).

    204. Still, C. & Westerlund, T. Solving convex MINLP optimization problems using a sequential cutting plane algorithm. Comput. Optim. Appl. (2006). doi:10.1007/s10589-005-3076-x

    205. Su, L., Tang, L., Bernal, D. E. & Grossmann, I. E. Improved quadratic cuts for convex mixed-integer nonlinear programs. Comput. Chem. Eng. 109, 77–95 (2018).

    206. Su, L., Tang, L. & Grossmann, I. E. Computational strategies for improved MINLP algorithms. Comput. Chem. Eng. 75, 40–48 (2015).

    207. Tawarmalani, M. Mixed integer nonlinear programs:  Theory, algorithms and applications. ProQuest Dissertations and Theses (2001).

    208. Tawarmalani, M., Ahmed, S. & Sahinidis, N. V. Global optimization of 0-1 hyperbolic programs. J. Glob. Optim. 24, 385–416 (2002).

    209. Tawarmalani, M. & Sahinidis, N. V. Convex extensions and envelopes of lower semi-continuous functions. Math. Program. Ser. B 93, 247–263 (2002).

    210. Tawarmalani, M. & Sahinidis, N. V. A polyhedral branch-and-cut approach to global optimization. in Mathematical Programming 103, 225–249 (2005).

    211. Tawarmalani, M. & Sahinidis, N. V. Global optimization of mixed-integer nonlinear programs: A theoretical and computational study. Math. Program. 99, 563–591 (2004).

    212. Tawarmalani, M. & Sahinidis, N. V. Semidefinite Relaxations of Fractional Programs via Novel Convexification Techniques. J. Glob. Optim. 20, 137–158 (2001).

    213. Tawarmalani, M. & Sahinidis, N. V. Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming. (2002). doi:10.1007/978-1-4757-3532-1

    214. Trespalacios, F. & Grossmann, I. E. Symmetry breaking for generalized disjunctive programming formulation of the strip packing problem. Ann. Oper. Res. 258, 747–759 (2017).

    215. Trespalacios, F. & Grossmann, I. E. Cutting plane algorithm for convex generalized disjunctive programs. INFORMS J. Comput. 28, 209–222 (2016).

    216. Trespalacios, F. & Grossmann, I. E. Cutting planes for improved global logic-based outer-approximation for the synthesis of process networks. Comput. Chem. Eng. 90, 201–221 (2016).

    217. Trespalacios, F. & Grossmann, I. E. Improved Big-M reformulation for generalized disjunctive programs. Comput. Chem. Eng. 76, 98–103 (2015).

    218. Trespalacios, F. & Grossmann, I. E. Algorithmic approach for improved mixed-integer reformulations of convex generalized disjunctive programs. INFORMS J. Comput. 27, 59–74 (2015).

    219. Trespalacios, F. & Grossmann, I. E. Review of mixed-integer nonlinear and generalized disjunctive programming methods. Chemie-Ingenieur-Technik 86, 991–1012 (2014).

    220. Trespalacios, F. & Grossmann, I. E. Lagrangean relaxation of the hull-reformulation of linear generalized disjunctive programs and its use in disjunctive branch and bound. Eur. J. Oper. Res. 253, 314–327 (2016).

    221. Tsoukalas, A. & Mitsos, A. Multivariate McCormick relaxations. J. Glob. Optim. (2014). doi:10.1007/s10898-014-0176-0

    222. Türkay, M. & Grossmann, I. E. Logic-based MINLP algorithms for the optimal synthesis of process networks. Comput. Chem. Eng. 20, 959–978 (1996).

    223. Vecchietti, A. & Grossmann, I. E. Modeling issues and implementation of language for disjunctive programming. Comput. Chem. Eng. 24, 2143–2155 (2000).

    224. Vecchietti, A. & Grossmann, I. E. LOGMIP: A disjunctive 0-1 non-linear optimizer for process system models. in Computers and Chemical Engineering 23, 555–565 (1999).

    225. Vecchietti, A., Lee, S. & Grossmann, I. E. Modeling of discrete/continuous optimization problems: Characterization and formulation of disjunctions and their relaxations. Computers and Chemical Engineering 27, 433–448 (2003).

    226. Vielma, J. P. Mixed integer linear programming formulation techniques. {SIAM} Rev. 57, 3–57 (2015).

    227. Vielma, J. P., Ahmed, S. & Nemhauser, G. L. A lifted linear programming branch-and-bound algorithm for mixed-integer conic quadratic programs. INFORMS J. Comput. 20, 438–450 (2008).

    228. Vielma, J. P., Dunning, I., Huchette, J. & Lubin, M. Extended formulations in mixed integer conic quadratic programming. Math. Program. Comput. (2017). doi:10.1007/s12532-016-0113-y

    229. Vigerske, S. Towards MINLPLib 2.0 Model instance collections. (2014).

    230. Vigerske, S. & Gleixner, A. SCIP: global optimization of mixed-integer nonlinear programs in a branch-and-cut framework. Optimization Methods and Software 1–31 (2017). doi:10.1080/10556788.2017.1335312

    231. Viswanathan, J. & Grossmann, I. E. A combined penalty function and outer-approximation method for MINLP optimization. Comput. Chem. Eng. 14, 769–782 (1990).

    232. Wächter, A. & Biegler, L. T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2005).

    233. Westerlund, T., Pettersson, F. & Grossmann, I. E. Optimization of pump configurations as a MINLP problem. Comput. Chem. Eng. 18, 845–858 (1994).

    234. Westerlund, T. & Porn, R. Solving Pseudo-Convex Mixed Integer Optimization Problems by Cutting Plane Techniques. Technology 253–280 (2002). doi:10.1023/A:1021091110342

    235. Westerlund, T. & Pettersson, F. An extended cutting plane method for solving convex MINLP problems. Comput. Chem. Eng. 19, 131–136 (1995).

    236. Yeomans, H. & Grossmann, I. E. Nonlinear disjunctive programming models for the synthesis of heat integrated distillation sequences. Comput. Chem. Eng. 23, 1135–1151 (1999).

    237. You, F., Castro, P. M. & Grossmann, I. E. Dinkelbach’s algorithm as an efficient method to solve a class of MINLP models for large-scale cyclic scheduling problems. Comput. Chem. Eng. 33, 1879–1889 (2009).

    238. You, F. & Grossmann, I. E. Integrated multi-echelon supply chain design with inventories under uncertainty: MINLP models, computational strategies. AIChE J. 56, 419–440 (2010).

    239. Zamora, J. M. & Grossmann, I. E. A branch and contract algorithm for problems with concave univariate, bilinear and linear fractional terms. J. Glob. Optim. 14, 217–249 (1999).

    240. Zamora, J. M. & Grossmann, I. E. A global MINLP optimization algorithm for the synthesis of heat exchanger networks with no stream splits. Comput. Chem. Eng. 22, 367–384 (1998).

    241. Zorn, K. & Sahinidis, N. V. Global optimization of general nonconvex problems with intermediate polynomial substructures. J. Glob. Optim. (2014). doi:10.1007/s10898-014-0190-2